
 
 

 

 

Felix 
Dece
 
 
 

Ra
fo

App

N. Nguyen,
mber 18, 2

 

apid Ca
or Autom

proved for P

, Toray Com
2016 

 

arbon F
mobile 

Public Relea

PROJEC
REP

0007-2

mposites (A

Fiber Pr
Structu

ase. Distribu

CT FINAL
PORT 
2016-3.3 

America), In

repreg 
ural Pa

ution is Unl

IACMI/000

DE-EE000

nc. 

Moldin
arts – “S

limited. 

07-2016/3.3

06926 

 

ng Tech
SEAHAW

3 

 

hnology
WKS”

y 

 



 
IACMI/0007-2016-3.3  DE-EE0006926 
 

ii  

 
 

 

 
  

DOCUMENT AVAILABILITY 
 

Reports produced after January 1, 1996, are generally available free via US Department of Energy 
(DOE) SciTech Connect. 

 
Website http://www.osti.gov/scitech/ 

 
Reports produced before January 1, 1996, may be purchased by members of the public from the 
following source: 

 
National Technical Information Service 
5285 Port Royal Road 
Springfield, VA 22161 
Telephone 703-605-6000 (1-800-553-6847) 
TDD 703-487-4639 
Fax 703-605-6900 
E-mail info@ntis.gov 
Website http://www.ntis.gov/help/ordermethods.aspx 

 
Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange 
representatives, and International Nuclear Information System representatives from the following 
source: 

 
Office of Scientific and Technical Information 
PO Box 62 
Oak Ridge, TN 37831 
Telephone 865-576-8401 
Fax 865-576-5728 
E-mail reports@osti.gov 
Website http://www.osti.gov/contact.html 

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute 
or imply its endorsement, recommendation, or favoring by the United 
States Government or any agency thereof. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of 
the United States Government or any agency thereof. 



 
IACMI/0007-2016-3.3  DE-EE0006926 
 

iii  

 

 
 
 
 
 

Materials Science and Technology Division 
Advanced Manufacturing Office 

 
 
 
 
 
 
 

Rapid Carbon Fiber Prepreg Molding Technology for 
Automobile Structural Parts – “SEAHAWKS” 

 
Felix N. Nguyen, Toray Composites (America) Inc. 
Lawrence Drzal, Michigan State University 

 
 
 

 
 
 

Date Published: 
December 2016 

 
 

Prepared by 
Institute for Advanced Composites 

Manufacturing Innovation 
Knoxville, Tennessee 37932 

managed by 
Collaborative Composite Solutions, Inc. 

for the 
US DEPARTMENT OF ENERGY 

under contract  DE-EE0006926 
 
 
 

Approved For Public Release 
  



 
IACMI/0007-2016-3.3  DE-EE0006926 
 

iv  

CONTENTS 

Page 
CONTENTS....................................................................................................................................................... iv 
LIST OF FIGURES AND TABLES..................................................................................................... ..v 
ACKNOWLEDGEMENTS ................................................................................................................................ .vi 
ABSTRACT.......................................................................................................................................................7 
1.1 Rapid Prepreg Molding for Automobile Structural Parts ................................................................. 7 

1.2 BACKGROUND ..............................................................................................................................8 
1.3 TECHNICAL RESULTS........................................................................................................ 8 

1.3.1 Theoretical Framework ......................................................................................................... 8
 1.3.1.1 Test Matrix ................................................................................................................ 11 
1.3.1.2 Material Selection ..................................................................................................... 12
 1.3.1.3 Molding Process Selection ........................................................................................ 12 
             1 Hydraulic Press ...................................................................................................... 13 

             2 RapidClave® .......................................................................................................... 15 
             3 Heated Composite Light Tool ................................................................................ 16 
             4 Light Induction Tool .............................................................................................. 17   

            5 Quickstep ............................................................................................................... 18 
1.3.2 Results ............................................................................................................................................... 19

 1.3.2.1 Cure Time ................................................................................................................. 21 
1.3.2.2 Void Content ............................................................................................................. 24 
             1 Hydraulic Press ..................................................................................................... 25 
             2 RapidClave® ......................................................................................................... 27 
             3 Heated Composite Light Tool ............................................................................... 27 
             4 Light Induction Tool ............................................................................................. 28 
             5 Quickstep .............................................................................................................. 29 
 1.3.2.3 Thermal Properties .................................................................................................... 29
 1.3.2.4 Mechanical Properties............................................................................................... 31
 1.3.2.5 Surface Finish Analysis ............................................................................................ 32 
            1.3.2.5.1 Defects and Rework ................................................................................... 32 
            1.3.2.5.2 Class A Characterization Methods ............................................................. 33
 1.3.2.6 Cost Analysis ............................................................................................................ 35 
              1.3.2.6.1 Cumulative and Average Panel Cycle Time ............................................. 35 
             1.3.2.6.2 Part Cost Variance vs. Average Part Cycle Time ..................................... 38 
              1.3.2.6.3 Part Cost Variance vs. Material Effective Cost ........................................ 39    
 1.3.2.7 Recycled Prepreg Study ............................................................................................ 40
 1.3.2.8 Automation Study ..................................................................................................... 41 

1.3.3 Sample Production ................................................................................................................ 43 
1.4 IMPACTS ........................................................................................................................................... 43 
1.5 CONCLUSIONS................................................................................................................................. 44 

LEAD PARTNER BACKGROUND ....................................................................................................... 44 
PARTNER INTRODUCTION ................................................................................................................ 45 
 

 



 
IACMI/0007-2016-3.3  DE-EE0006926 
 

v  

LIST OF FIGURES  
 
 
Figure 1 Prepreg molding work cell ....................................................................................................... 9 
Figure 2 Pressure and heating rate comparison of molding processes ................................................... 13 
Figure 3 Wabash hydraulic press provided by Reichhold ..................................................................... 14 
Figure 4 Globe lab-scaled RapidClave® ............................................................................................... 16 
Figure 5 Janicki Heated composite light tool ......................................................................................... 17 
Figure 6 RocTool Light induction tool .................................................................................................. 18 
Figure 7 Quickstep molding process ....................................................................................................... 19 
Figure 8 Cure time chart for FAC-01 molding ............................................................................................. 21 
Figure 9 Example RapidClave® cure profile ......................................................................................... 22 
Figure 10 Example HCLT cure profile .................................................................................................. 23 
Figure 11 Cure time chart for FAC-03 molding ..................................................................................... 24 
Figure 12 Hydraulic press panels void content analysis ........................................................................ 25 
Figure 13 Hydraulic press FAC-05 panels void content analysis .......................................................... 26 

  Figure 14 RapidClave® panels void content analysis ........................................................................... 27 
Figure 15 Heated composite light tool panels void content analysis ..................................................... 28 
Figure 16 Light induction tool panels void content analysis .................................................................. 29 
Figure 17 Tg comparison of press molded panels .................................................................................. 30 
Figure 18 G’ Retention comparison of press molded panels .................................................................. 31 
Figure 19 Fiber distortion and dry spots on surfaces of press molded panels ........................................ 32 
Figure 20 Hairline dry spots on surface of press molded panels ............................................................ 32 
Figure 21 Examples of minimal rework press molded panels ................................................................ 33 
Figure 22 Examples of minimal rework LIT molded panel ................................................................... 33 
Figure 23 Deflectometry set-up.............................................................................................................. 34 
Figure 24 Spectral gloss data for selected molded panels ...................................................................... 35 
Figure 25 FAC-01 cumulative panel cycle time .................................................................................... 37 
Figure 26 Part cost variance versus part time ........................................................................................ 39 
Figure 27 Part cost variance versus material effective cost ................................................................... 40 
Figure 28 NDI scan of recycled FAC-01 prepreg panels ....................................................................... 41 
Figure 29 Lay-up time vs tape width ...................................................................................................... 42 
Figure 30 ATL tape paths for various panel sizes .................................................................................. 43 
 

LIST OF TABLES 
 
 
Table 1 Summary of Phase I .................................................................................................................. 11 
Table 2 Test Matrix ................................................................................................................................ 12 
Table 3 Molding method overview  ....................................................................................................... 13 
Table 4 Phase I data summary ................................................................................................................ 20 
Table 5 Panel ply orientation and mechanical tests ................................................................................ 31 
Table 6 Surface finish analysis by deflectometry ................................................................................... 34 
Table 7 Estimated average panel cycle time .......................................................................................... 37 
Table 8 Scrap rate from various panel sizes, [0]6 lay-up ...................................................................... 42 

 
 
 
 

ACKNOWLEDGEMENTS 



 
IACMI/0007-2016-3.3  DE-EE0006926 
 

vi  

 
This project was sponsored by the U.S. Department of Energy, Office of Energy Efficiency and 
Renewable Energy, Advanced Manufacturing Office, under contract DE-EE0006926 with the 
Institute for Advanced Composites Manufacturing Innovation (IACMI).  Additional support was 
provided by the following organizations, as project team participants or supports. 

• Toray Composites (America), Inc., (‘TCA’) 
• Zoltek Corporation (‘Zoltek’) 
• Reichhold LLC 2 (‘Reichhold’) 
• Janicki Industries, Inc. (‘Janicki’) 
• Globe Machine Manufacturing Company (‘Globe’) 
• Composite Recycling Technology Center (‘CRTC’) 
• American Composites Manufacturers Association (‘ACMA’)  
• Michigan State University (‘MSU’) 
• Huntsman (“Huntsman”) 
• RocTool (“RocTool”) 
• KTX Corporation (“KTX”) 
• ChemTrend (“Chem Trend”) 
• Quickstep (“Quickstep”) 
• Toray Carbon Fibers (America), Inc. (“CFA”) 
 

The authors also acknowledge contribution from the following individuals 
• TCA: Brad Fenbert, Kevin Lange, Masato Funada, Nobu Arai, Ken Yoshioka 
• Zoltek: Philip Schell 
• Reichhold: James Bono, Randy Jones, John Ilkka 
• Janicki: Andy Bridge, Greg Applewhite, Jed Brich 
• Globe: Ted Hile, Dan Allman, Jim Martin 
• CRTC: Geoff Wood 
• ACMA: Dan Coughlin, Sarah Boyer 
• MSU: Mike Rich  
• Huntsman: Adam Harms, Robert Sawitski 
• RocTool: Lionel Schaal 
• KTX: Kanji Oyama 
• Chem Trend: Sam Dethloff 
• Quickstep: Ana Carolina Nogueira 
• CFA: Chet Moon 
• DoE: John Winkel, Kelly Visconti, Ravi Deo 
• IACMI: John Hopkins, Dale Brosius, Uday Vaidya



 
IACMI/0007-2016-3.3  DE-EE0006926 
 

7  

ABSTRACT 
 

Carbon fiber reinforced plastics (CFRP) offer a variety of potential benefits to automotive parts vs. 
metals, mainly in the form of light-weighting, part consolidation, and corrosion resistance. 
However, complexities of composite manufacturing and lack of robust supply chain evolution and 
integration have hindered technological advancements to overcome high manufacturing costs, slow 
production rates and prolonged time to market. As a result, the use of CFRP in automotive 
structural parts has been limited to expensive “low to medium” volume platforms.  
 
The project overall investigates a concept of ecosystem-based composite manufacturing that 
enables rapid implementation of an integrated manufacturing system. Through partnering with 
individual organizations in the prepreg supply chain along with their respective technological 
advancements in materials, part designs, tool, equipment, recycling and repair, this project’s 
objective is to integrate these technologies into a manufacturing system through optimizing them 
individually and as a whole.  
 
Upon a successful delivery of a finished composite component to market, all associated 
technologies are evolved to production readiness levels not only individually but also in part of the 
integrated manufacturing system itself. Risks are mitigated effectively, as development costs and 
successes (and/or failures) are shared among all organizations. As a result, further cost reduction of 
the finished component is anticipated. 
 
Toray Composites (America) Inc. led the effort along with 13 other organizations to investigate and 
validate the concept. Phase I of this project via flat panel demonstrations focused on molding 
aspects of the integrated manufacturing system from several combinations of prepreg materials and 
molding methods used such as hydraulic press, RapidClave®, heated composite light tool (HCLT), 
light induction tool (LIT) and Quickstep. Other aspects such as automation equipment, recycling 
and component identification to further investigate and validate the concept via component 
demonstration in Phase II were also explored.  It was found that several prepreg/process 
combinations could achieve a 3-6 min cure cycle time with panel thickness from 0.8 to 2.4 mm. 
This can be achieved under compaction pressure as low as vacuum, leading to composite panels that 
are void free, have good to excellent molded surfaces, Tg (by G’onset of DMA) ranging from 120-
190 oC, and mechanical performance comparable to conventional autoclave cure.  
 

1.1 Rapid Prepreg Molding for Automobile Structural Parts 
 

Project type: Automotive 
Start date: April 18th, 2016 
End date: December 18th, 2016 
 
Partner organizations and classification (large or SME) 

1. Toray Composites (America), Inc., (‘TCA’, large) 
2. Zoltek Corporation (‘Zoltek’, SME) 
3. Reichhold LLC 2 (‘Reichhold’, large) 
4. Janicki Industries, Inc. (‘Janicki’, large) 
5. Globe Machine Manufacturing Company (‘Globe’, SME) 
6. Composite Recycling Technology Center (‘CRTC’, SME) 
7. American Composites Manufacturers Association (‘ACMA’, SME)  
8. Michigan State University (‘MSU’, large) 
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1.2 BACKGROUND 
 

Lux Research in 2015i  forecasted the CFRP automobile market could reach six billion dollars by 
2020. Structural parts such as floors, pillars, sills and roofs are growing at a rapid rate and take about 
50 % of the market share.  Roland Berger in 2012ii  estimated that CFRP parts of the same function 
were about 4 times lighter than steel but 8 times more expensive than steel. They further anticipated 
about 30 % cost reduction of the finished part cost by 2020. Process costs and raw material 
contributed to 40 % and 20 % of the reduction, respectively.   
 
Several efforts have been made to adopt CFRP for automotive applications.  However, complexity of 
composite manufacturing coupled with an underdeveloped mass-infrastructure for integration in-
practices have imposed numerous risks for a wider implementation of composites.  An improved 
composite manufacturing system while integrating recent advancements of technologies in raw 
materials, automation, tool, molding, trimming and painting, as well as recycling technologies is 
essential to an evolved supply chain to support further reduction of cost and promotion to achieve 
production rate targets of at least 100,000 units per year, allowing automobile OEM/Tier 1 
justification of CFRP parts in high volume platforms.   
 
Toray (Composites) America, Inc. (“TCA”) has realized a CFRP ecosystem concept originally 
applied widely in IT companies such as Apple and Google, which involves a network of 
organizations – including suppliers, distributors, customers, competitors, government agencies, and so 
on – involved in the delivery of a specific product or service through both competition and 
cooperation.  Since the CFRP ecosystem is scaled up as a whole from the design concept of a part to 
commercialization of the part, organizations in the prepreg supply chain could mitigate their risks by 
utilizing and leveraging resources from other organizations to evaluate and improve own technologies 
and/or products to meet the common goal of delivering a cost effective CFRP structural part. TCA is 
leading the effort for developing and validating the concept of ecosystem-based CFRP manufacturing 
in the U.S. using prepreg materials. In this report TCA discusses results of Phase I for developing and 
validating the concept via flat panel demonstrations. Critical technological and financial information 
as well as a proposed manufacturing work cell set up for serial production of a component at a high 
production rate are presented. 
 

1.3 TECHNICAL RESULTS 
 
Results of this project are the culmination of a composite ecosystem combining several project 
partners and supporting project partners who are collaboratively working to provide a solution for the 
challenge of high costs and cycle times currently limiting the use of CFRP in automotive structural 
parts. Our approach to reduce costs and panel cycle times includes an integration of material 
selection, molding methods, preform design patterns, together with waste stream utilization. It is 
anticipated that an impact of at least 15 % cost reduction for target components could be achieved.  
 
The scope of this report is limited to Phase I, as described below. 

 

1.3.1 Theoretical Framework 

 
Ultimately, this project is focused on an ecosystem-based solution for CFRP manufacturing for 
automobiles not only for high speed, energy efficiency, waste stream utilization but also time 
reduction to commercialization. It is understood that not all automobile parts could be converted 
from metal to composite economically, and there is no universal composite manufacturing process 
for a candidate composite part. Efforts were placed on developing an automatic composite 
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maximum fiber volume for the thinnest and lightest designs vs. thermosetting materials. 
Furthermore, since thermoplastic materials have to be molded at extremely high temperatures 
over 300 oC due to extremely high melting viscosity, more than 500 psi compaction pressure 
is needed to compensate for cooling effects after the materials are taken out of an oven. For 
parts larger than 2m2, it will be a great challenge.  Additional features of thermosetting 
materials such as rapid curability, fiber areal weight (FAW) as low as 50 gsm, excellent 
control of cured ply thickness, and long out time at room temperature allow composite parts to 
be cured less than 3 min, less than 2 min, and even less than 1 min, achieving the compelling 
out-of-the mold quality similar-to or better than thermoplastic materials. For this study 
Torayca® T700S carbon fibers are standard but also low cost carbon fibers such as ZoltekTM 
PX35 along with epoxy-based and vinyl hybrid-based (AdvaliteTM) resins are investigated.  
Table 2 summarizes all prepreg systems for Phase I of the project (the present study). 
 

iv. Molding method: Another advantageous feature of thermosetting over thermoplastic materials 
is substantially lower resin viscosity during molding, requiring only vacuum pressure for part 
consolidation. Recent advancements in hydraulic press as well as other prepreg molding 
methods with ramped-heating such as RapidClave®, HCLT, LIT broke the 3-min molding 
cycle time barrier of rapid cure thermosetting prepregs. Figure 2 summarizes all molding 
methods for the present study. 

 
v. Automated cutting/ Lay up/Preforming: Optimal design patterns allow minimal prepreg wastes 

and rapid press preforming. Slit tape for AFP/ATL could be an option. The present study 
estimates lay up speed vs. tape width. 

 
vi. Waste minimization/Recyclability:  Molding of secondary parts from prepreg scraps. The 

present study documents scrap rates and initially evaluates moldability of chopped scrap 
prepregs for flat panels from fiber distribution and void content. 

 
vii. Finishing: The present study documents surface defects and methods to characterize class A 

finish. 
 

viii. Hybrid/ multi-material form molding: co-cured between long carbon fiber prepreg and its 
scrap or SMC. This will be investigated in Phase II. 

 
ix. Serial production: automatic work cell comprising of cutting  laying up  preforming  

charging  curing  demolding. This present study investigates a method to determine 
average panel cycle time based on daily production rate. 

 
x. Part cost variant: part cost vs. cure cycle time (or average panel cycle time), prepreg material 

effective cost (total prepreg cost including scrap). The present study explores part cost variant 
tendencies using a cost model on a large panel of 3 m x 1 m.  

  
The project is broken into two phases. Phase I as shown in Table 1 constitutes a benchmarking 
study with an objective to validate the concept of an ecosystem-based solution to reduce cycle 
time/cost of prepreg molding via flat panel demonstrations. The anticipated deliveries include 
identification of supply chain partners and database build for materials combined with processes 
suitable for the most cost-effective automatic work cell and performance.  Phase II is a continuation 
of Phase I for a component demonstration study with an objective to utilize lessons learned from 
Phase I not only from technologies but also from the collaborative partnership framework working 
to further validate the ecosystem-based solution with an extended and more complete supply chain 
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integration. The anticipated deliverables include manufacturability and financial viability to 
indentify a path for commercialization.  
 

Table 1. Summary of Phase I including number of tasks, responsible organizations and project 
timeline. The performance period was originally set from April-October but later was extended to 
December to consider approval process for public release of this report. Official project partners 
include TCA, Zoltek, Reichhold, Globe, Janicki, CRTC, MSU, ACMA while supporting project 
partners include CFA, Huntsman, RocTool, KTX, and Quickstep.  *Zoltek, CFA, Huntsman, and 
Reichhold provided materials to TCA and support to make prepregs.  

Task 
Primary  

responsibility 
Task description 

2016 

A
p

r 
M

ay
 

Ju
n 

Ju
l 

A
ug

 
S

ep
 

O
ct

 
N

ov
 

D
ec

 

1 

Flat panel study with material and molding method
TCA Prepreg manufacturing*

Reichhold Hydraulic press molding
(RocTool/KTX) Light Induction Tool molding
Globe Machine RapidClave® molding

Janicki Heated Composite Light Tool molding
(Quickstep) Quickstep molding

MSU 
Panel evaluation (void, class A, 
thermal/mechanical properties)      

2 
Documentation of recycling method for prepreg scrap

TCA Scrap from hand layup vs. automation
CRTC Scrap processing and molding trial   

3 
Documentation of ATL/AFP

TCA Flat tool ATL/AFP estimation

4 
Phase II planning

All Component identification
All Baseline component cost estimation   

5 TCA, ACMA Final report     
 

1.3.1.1 Test Matrix  

Five prepreg materials and five manufacturing processes were investigated in Phase I, as seen in 
Table 2, resulting in up to 15 unique manufacturing conditions. However, only 10 out of 15 
conditions were fully executed due to time constraint. The following criteria were implemented for 
Go/ No Go decisions: 

1. The prepreg material must have a cure cycle time (defined as cumulative time once heat is 
applied to the uncured panel until cooling to demolding temperature) less than 5 min. 

2. The cured composite part must have less than 1 % void. Selected mechanical properties are 
evaluated. In addition, it must have a Tg greater than 130 °C with a degree of cure (DoC) 
measured by a differential scanning calorimetry (DSC) of at least 90 %. Heat deflection 
feature is also documented. 

3. Minimal rework is required for the finishing step, judgement based on the best quality 
panels representing each integrated manufacturing condition, and quantified based on 
selected class A characterization methods. 

4. Qualitative projection of individually critical cost factors such as average panel cycle time, 
material effective cost on finished part cost. 
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Anticipated production. Minor improvements include fixing the air popper and minimum gap 
requirements to obtain higher quality thin panels. Major improvements are not related to the press 
itself but the overall molding process such that the charge could be preformed or B-staged at a 
certain degree of cure to allow easier transfer and positioning the charge in the center of the tool’s 
cavity. A robot could be used to support the charging process and improve overall panel cycle time. 
 
2 RapidClave®  
 
Current state-of-the-art. The first generation  ”RapidClave® Classic” is currently used for 
the  production of several Corvette C-7 body panels  by Tier-1 automotive supplier  Plasan Carbon 
Composites. RapidClave® employs an isobaric chamber integrated into a press type environment 
with fully automated-programmable control of process temperatures & pressures. Tool temperature 
ramp up is achieved by utilizing fluid heated tool. Material compaction is provided by pressurizing 
the top chamber cavity which encloses the tool. RapidClave® Classic allows for controlled molding 
temperatures up to 288 °C, ramp rate up to 80 °C/min, up to 150 psi pressure, 28 in/hg vacuum, and 
rapid cooling. RapidClave® 2 & 3 enable the fastest temperature ramp and cool down capability 
with peak temperatures up to 480 oC via hot air impingement heating and induction tool heating 
(Globe-RocTool partnership) technologies. Chamber pressures capable up to 350 psi are also 
realized.  In addition, the machine can be optioned with an automatic tool-change system allowing 
rapid transfer of one tool in and out the machine while another tool is prepped and waiting for the 
curing process, enabling minimal machine idle time. RapidClave® enables low energy consumption 
vs. hydraulic press but might require similar footprint with reduced ceiling height requirements. 
 
Present study. This study utilizes a lab-scaled RapidClave® with a molding surface of 18.5” x 18.5” 
as shown in Fig. 4. Globes Lab machine is designed for plaque production and includes the 
capability to introduce air into the heated pressurized chamber. This machine is equipped with 
heating oil up to 288 oC, providing a ramp rate up to 80 oC/min, an air pressure of up to 150 psi 
while the maximum cooling rate by water is around 40 °C/min. This machine was not designed nor 
intended to support state-of-the-art (SOTA) cycle time demonstrations. 
 
For molding, the lower platen was initially heated to 50 °C. A mold release was wiped onto the 
surface of the flat tool and allowed to evaporate. A pre-laid up laminate was placed onto the tool 
surface, and thermocouples were taped to the four outer edge surfaces to monitor the part 
temperature during cure. Instead of using a reusable silicone bag as seen with production machine, 
manual bagging was carried out with a peel ply film and bleeder applied overtop, before the part 
was sealed with a vacuum bag and sealant tape. The tool was then loaded manually onto the lower 
heated platen, and thermocouples were manually connected to the machine ports. After the tool was 
loaded, vacuum was applied (28 in/hg), and the chamber was lowered (taking around 30 seconds). 
Upon sealing of the chamber, temperature was applied by circulating heated oil in the platen, but no 
heated air on the bag-side surface of the part. In order to control temperature variance from the 
setpoint, two heating rates were used. Using a heating rate of approximately 80 °C/min, the 
temperature was raised to 140 °C where the heating rate switched over to 55 °C/min until reaching 
the dwell temperature. The chamber was pressurized during the ramp, reaching 85 psi before 
ramping up to the dwell temperature of 163 °C. Temperature was held at 163 °C for 3 min, before 
the tool was cooled down to 70 °C at around 40 °C/min and removed from the chamber. 
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1.3.2.1 Cure Time 

Cure time is defined in the study as the time when heat is applied to the uncured panel until cooling to 
demolding temperature.  Starting with FAC-01 (the baseline material for comparison among different 
manufacturing conditions), it was previously observed that a glass transition temperature (Tg) 
measured from storage modulus (G’) onset of dynamic mechanical analysis (DMA) method could 
achieve as high as 140 oC if it was cured at 143 o C (290 oF) for 15 min in an autoclave to achieve a 
degree of cure (DoC) measured by modulated differential scanning calorimetry (MDSC) method of at 
least 90 %. In order to achieve a shorter cure time with a similar DoC, FAC-01 was targeted to be 
cured at 163 oC (325 oF) for 3 min. Tg was set at a minimum of 130 oC to ensure minimal penalty for 
subsequent thermal processing and mechanical properties, if any. It was observed excessive cure at a 
temperature higher than 163 oC to achieve a shorter cure time could lead to adverse performance.  

While isothermal molding at 163 oC and demolding at this temperature to achieve the shortest cure 
cycle time was attempted, it was anticipated that in order to achieve a quality molded surface finish, 
i.e., minimal rework from surface defects and voids, additional time from a heating up rate from a 
starting temperature to the cure temperature and cooling rate to a demolding temperature might be 
needed. For this reason, a cure cycle time was targeted to 5 min, pushing efforts to investigate 
combinations of reasonably doable starting temperature, heating/ cooling rates and demolding 
temperature vs. isothermal cure. 

Figure 8 summarizes cure cycle time for all molding processes for FAC-01. For each process, the first 
bar represents the possibly achievable cure cycle time after a reasonable investigation while the 
second bar projects an improved cure cycle time if the molding parameters would have been further 
optimized in the current laboratory-scaled machine and/or in a production ready machine.  

 

 

Figure 8. Cure time chart for FAC-01 molding 
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1. Hydraulic Press. The three minute requirement at 163 oC was successfully achieved by isothermal 
molding in the press and demolding at this temperature without compromising molded surface finish 
and void free (to be discussed in details below). Due to the shear edges of the compression mold, it 
was not possible to place thermocouples onto the part surface during the cure. The tool was kept at a 
consistent temperature, 163 °C, throughout the molding process. 

It was anticipated that no further optimization of molding parameters could shorten the cure cycle 
time less than 3 min unless a lower DoC could be targeted and the panels could be free-standing post 
cured during subsequently thermal processes such as primer applications and painting. However, post 
cure processing is not in the scope of the present study.  

2. RapidClave®. The RapidClave® cure time is the result from starting at an initial mold temperature of 
50 °C-75 °C , ramp rate of 85 °C/min to 140 oC, with a reduced heating rate of 50 °C/min to the final 
dwell temperature of 163 °C, which was held for 3 min, cool down rate of 50 °C/min and a 
demolding temperature of 70 oC.  

Globe anticipates they could bring the current cure cycle time from 6 min to 4.4 min (3  min cure plus 
1.4 min for ramp up and down) by implementing advanced elements for more-rapid heating and 
cooling rates to their laboratory machine and/or production machines. Further time reduction could be 
done by raising starting mold temperature and demolding temperature. An example cure plot can be 
seen in Fig. 9. Thermocouples were placed on the top surface (bag side) of the panels, 1 inch in from 
each corner of the laminate.  

 

Figure 9. Example Rapidclave® cure profile  

3. HCLT. The HCLT cure time is the result from starting at an initial mold temperature of 25 °C, ramp 
rate of 65 oC/min to 163 oC and hold for 3 min, cool down rate of 65 °C/min, and a demolding 
temperature of 65 oC. A brief hold at around 140 °C was utilized to control temperature overshoot. An 
example cure plot can be seen in Fig. 10. 
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Janicki anticipated that they could bring the current cure cycle time from 6.3 min to 5 min by further 
optimizing the heating  and cooling rates, as well as starting cure at a temperature above ambient. 

 

 

Figure 10. Example HCLT cure profile 

4. LIT. The LIT cure time is the result from a two-step cure, from starting at an initial mold temperature 
of 38 °C, ramp up rate of 85 °C/min to an intermediate dwell at 105 °C for 1 min, and a second ramp 
rate of 50 °C/min to 163°C for 2 min, a cooling rate of 120 °C/min and a demolding temperature of 
40 oC.  It was noticed that the actual temperature followed the set-point pretty well. However, the 
current machine did not allow export temperature data.  

RocTool anticipated that they could bring the current cure cycle time from 6 min to 5 min by 
increasing the heating rate to at least 120 oC/min, as well as increasing the initial mold temperature 
and the demold temperature. A successful demonstration with a heating rate of 120 oC/min resulted in 
similar panel quality as other panels that were evaluated at MSU. 

5. Quickstep. Details are available upon a request to Quickstep, Australia 

 

 

For FAC-02 identical cure cycle times for each participating molding process for both the present 
experiment and further optimization were achieved because it comprises G-83C resin, which is the 
same resin as in FAC-01.  

For FAC-03, a modified G-83C resin for faster cure at 163 oC was utilized. However, for the present 
experiment for each participating molding process a 3 min cure was investigated for comparison with 
G-83C resin.  A reduction in cure cycle times could be achieved if desired since it was found that 
when cured for 2 min, at least a DoC of 90 % was obtained. In order to ensure the properties 2.5 min 
cure was proposed. The summary is shown in Fig. 11. 
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For FAC-05, Advalite™ vinyl hybrid resins from Reichhold were utilized. For the present experiment 
for each participating molding process 3 min cure was investigated for comparison with G-83C resin.  
A reduction in cure cycle times could be achieved if desired since it was found that when cured for at 
least 2 min, at least a DoC of 90 % was resulted. In order to ensure the properties 2.5 min cure was 
proposed. 

 

Figure 11. Cure time chart for FAC-03 molding 

1.3.2.2 Void Content 

The present study set a void content target of less than 1 % as higher amounts adversely affect 
mechanical properties of cured structural parts. Ideally, the average void content would be below 1 %, 
with no regions exceeding much higher than that target, as localized voids would likely create failure 
zones in the part.  

Two techniques were used to measure void content of each cured panel. Panels were first evaluated 
using Ultrasonic C-scan Non-Destructive Inspection by TCA. Panels were scanned in comparison to 
autoclave cured specimens of similar thickness and known void content. This method served as a 
quick, qualitative assessment of part consolidation and overall void content. The other evaluation 
technique used was microscopy conducted by MSU, which provided a more quantitative average void 
content value to be obtained as spot checks. Eight specimens from various locations (marked by *) 
from each panel of the entire cross-section were cut, polished, and observed under a microscope. 
Images were captured, and sent to TCA to determine average void content based on the eight 
specimen locations using imaging software. For the following tables, the microscopy image (from the 
location marked by a yellow star) is representative of the average void content per the eight 
specimens extracted from a panel, with the reported void content value reflecting the actual average 
of all eight specimens.  
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Figure 17. Tg comparison of press molded panels 

 
For MDSC, the average Tg of FAC-01 and FAC-02 (same baseline G-83C resin system) was near 
150 °C. The FAC-03 system, with a modified G-83C composition, yielded a much higher Tg, 
upwards of 190 °C. FAC-05 was also well above the target DoC, with a Tg comparable to FAC-01, 
as measured by MDSC. 
 
For DMA, Tg values determined by G’ onset of FAC-01 and FAC-02 panels fell on average right 
around 130 °C. A large increase in Tg was again observed in FAC-03, averaging around 170 °C. Tg 
of FAC-05 was slightly under the target, averaging 120°C. A similar pattern can be observed in Tg 
determined from tan delta.  
 
As shown in Fig.18 G’ retention for FAC-01 and FAC-02 followed a consistent pattern, starting at 
around 70 % retention at 120 °C, dropping to ~50 % at 135 °C, with a steep drop occurring at 160 
°C, (~15 % retention).  60-70 % G’ retention was noted to be suitable for handling during thermal 
processing such as primer application and paint. For FAC-05, despite having a lower Tg than FAC-
01, some improvements were observed in retention beyond 100°C. FAC-03 showed large 
improvements in overall G’ retention, as its Tg was much higher than FAC-01, FAC-02, or FAC-05. 
G’ retention remained above 90 %, until 160 °C, where retention dropped to around 80 % of its 
initial value and reduced to 60-70 % at 190 oC. As a result thermal processing for FAC-03 after 
cured could be performed up to 190 0C, which is probably the best automobile material system 
currently in the market. 

100

125

150

175

200

DSC  G' Onset  tanD

Tg
 (°

C)

Tg Analysis Method

FAC-01 FAC-02 FAC-03 FAC-05

M 



 
IACMI/0007-2016-3.3  DE-EE0006926 
 

31  

 
Figure 18. G’ Retention comparison of press molded panels 

 
1.3.2.4 Mechanical Properties 

 
Table 5 summarizes tested mechanical properties for each manufacturing condition. There is no set 
target, database, or standards to which performance of molded panels can be compared. However, 
when compared to available data from conventional autoclave cure (known to produce the highest 
quality panels) for interrogated combination of material and molding process, similar values were 
observed. Also, noted that processing parameters (pressure, time, temperature and ramp rate) could 
skew data. As a result, collected data is best used as reference(s) for particular combination(s) of 
material/ molding method of interest for further optimization. It was decided that data would not be 
included in this report but made available to project partners. For other parties who might have an 
interest, upon a request to TCA, data might be released. 
 

Table 5. Panel ply orientation and mechanical tests 
Panel Number Lay-up Mechanical Tests Test condition ASTM 

1 [0/90]s 
0° Flex RT ASTM D7264 
90° Flex RT ASTM D7264 

2 [0/90/0]s 
0° Flex RT ASTM D7264 
90° Flex RT ASTM D7264 

3 [0/90/0/90]s 
0° Flex RT ASTM D7264 
90° Flex RT ASTM D7264 

4 [0]6 
0° Tension RT ASTM D3039 

0° Compression RT ASTM D3410 

5 [0]12 
ILSS RT ASTM D2344 

0° Flex RT ASTM D7264 
90° Flex RT ASTM D7264 
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Gloss with a 60° incident angle reflectometer. It is important to note that spectral gloss is not 
considered an indicator of class A. The units of the spectral gloss values (GU) are relative to the 
reference specimen used, with 100 GU meaning the surface had the same surface reflectance as the 
reference.  
 

 
Figure 24. Spectral gloss data for selected molded panels 

 
Spectral gloss data was collected for selected panels as shown in Fig. 24. One RapidClave® panel 
had relatively high quality results for both axial and transverse scans, which was the FAC-03 4 ply 
panel. The material and process yielding the highest surface quality was pressed molded FAC-03 
panels, which yielded three of the highest GU values for both transverse and axial scans, which also 
yielded the best results based on deflectometry analysis. A typical low limit threshold for gloss is 
above 60, which nearly all of the panels surpassed in axial scans, with less consistency for the 
transverse scans. The highest quality panels from all manufacturing conditions indicated a high 
gloss surface could be achieved.  

 
1.3.2.6 Cost Analysis  
 

The present study also explored critical factors responsible finished panel costs. Average panel cycle 
time and material effective cost were explored and summarized as below 
 
1.3.2.6.1 Cumulative and Average Panel Cycle Time  
 
Cumulative panel cycle time in the present study is defined as the total time it takes from (0) 
cleaning/ preparation  (1) cutting  (2) laying up  (3) preforming  (4) charging  (5) curing 
 (6) demolding. Figure 25 summarizes panel cycle time for the participating molding processes 
using FAC-01 for 6-ply panels.  Note molding process includes charging, curing and demolding. 
The time for each process was adjusted to a 12”x12” panel for comparison. For each process, the 
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first bar represents the potentially achievable cumulative panel cycle time after a reasonable 
investigation while the second bar projects an improved cumulative panel cycle time if the processes 
#1-6 and their processing parameters would have been further optimized in the current laboratory-
scaled machine and/or in a production ready machine.  Quickstep process was excluded from this 
analysis. 
 
(0) Cleaning and preparation process in the present study includes placement of an external mold 
release on the tool surfaces initially and subsequently after each molding and preparing the tool for 
the next molding. Project partners performed this process and documented the time. Time was 
adjusted to that of 12”x12” 6-ply panel in the panel cycle time calculation in Fig. 25.  
 
(1) Ply cutting process was performed by TCA using an automatic cutter for three different panel 
sizes of 14”x14” (press), 30”x20” (LIT) and 12”x12” (RapidClave®, HCLT). Time was adjusted to 
that of 12”x12” 6-ply panel in the panel cycle time calculation in Fig. 25. This process took about 1 
min. 
 
(2) Hand lay-up process was also performed by TCA with debulking every other ply for 30 sec and 
final debulk of 1 min. Time was adjusted to that of 12”x12” 6-ply panel in the panel cycle time 
calculation in Fig. 25. This process took about 5 min. 
 
(3) Preforming process in the present study includes bagging of a prepreg stack on a tool and 
additional debulking time after bagged but before temperature is ramped up to the cure temperature. 
This process is more applicable to RapidClave®, HCLT, and LIT. Project partners performed this 
process and documented the time. No adjustment to accommodate for different panel sizes was made 
in the panel cycle time calculation in Fig. 25. 
 
(4) Charging process in the present study is part of the molding process including placement of the 
ready-to-go panel in a machine for molding. It is more applicable to press, RapidClave® and LIT. 
Project partners performed this process and documented the time. No adjustment to accommodate 
for different panel sizes was made in the panel cycle time calculation in Fig. 25. 
 
(5) Curing process in the present study is part of the molding process including ramping the 
temperature up to the cure temperature and cooling down to demolding temperature. This process 
was described in detail previously. Project partners performed this process and documented the time. 
No adjustment to accommodate for different panel sizes was made in the panel cycle time 
calculation in Fig. 25. 
 
(6) Demolding process in the present study is part of the molding process including physically taking 
the cured panel out of the tool and removing of bagging materials. Project partners performed this 
process and documented the time. No adjustment to accommodate for different panel sizes was made 
in the panel cycle time calculation in Fig. 25. 
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2. RapidClave®. Individual processing times in the present study were presented in Fig. 25. The 
cumulative panel time was 24.5 min. Majority of additional time vs. press came from clean/ 
preparation, preforming, charging, curing and demolding processes. Globe anticipated that they could 
reduce the panel cycle time to 12.3 min, taking into account of further optimization of the performing, 
charging, and demolding processes similar to those in their production machine in addition to the 
curing process with implemented technologies described above. In serial production with the above 
work cell, the average panel cycle time would be 4.84 min, leading to 58,264 panels per year. 

3. HCLT. Individual processing times were presented in Fig. 25. The total panel time was 26.1 min. 
Majority of additional time vs. press came from preforming process since only vacuum pressure was 
used. Janicki anticipated that they could reduce the panel cycle time to 16.4 min, taking into account 
of further optimization of the performing process in addition to the curing process with implemented 
technologies described above. In serial production with the above work cell, the average panel cycle 
time would be 8.5 min, leading to 33,176 panels per year. 

4. LIT. Individual processing times were presented in Fig. 25. The total panel time was 24 min. Majority 
of additional time vs. press came from preforming process since only vacuum pressure was used. 
Roctool anticipated that they could reduce the panel cycle time to 13 min, taking into account of 
further optimization of the performing process and the curing process. In serial production with the 
above work cell, the average panel cycle time would be 6.50 min, leading to 43,384 panels per year. 

 

1.3.2.6.2 Part Cost Variance vs. Average Part Cycle Time (Part Time) 

Globe provided rough part cost estimation including prepreg material cost, direct cost with 
amortization and indirect cost vs. average part cycle time using their cost model with assumptions of 
3 m x 1m panel, 1 RapidClave®, 2 tools, material effective cost of 200 % (i.e., the cost of total 
prepreg amount used to make the part including its scrap; see the below section for more details), and 
annual operation time of 235 days, 24 hours per day, 5 days per week. Figure 26 shows number of 
parts per year vs. part time and part cost vs. part time in that the part cost was normalized to cost from 
a 17-min part time process. As shown, a 3-min part time is needed to achieve at least 100,000 parts 
per year for this work cell. There is a modest part cost reduction of 20 % when the part time is 
reduced from 17 min to 8 min and very minimal part cost reduction for part time reduction less than 8 
min. This indicates that the material effective cost assumption of 200 % is the extreme case, 
prompting that a substantial reduction of scrap to reduce overall part cost is critical. If the material 
effective cost is 100 % (a little scrap) combined with a 3-min part time process, there is about 57 % 
reduction in the resulting part cost.  

Note that the part cost information in this section is just to show general tendencies for the purpose of 
this discussion. More accurate part cost information would come from part manufacturers. 
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composites.  Selection of a combination of prepreg and molding method for large-scaled 
component demonstration will depend on one’s reference and/or budget.  

• Meeting the 3-min or less cure cycle time requirement enables prepregs to be the ideal 
candidate for thinnest, lightest and largest structural parts such as an Escalade roof outer 
panel at high production rate vs. RTM and thermoplastic material. However, in a serial 
production automatic lay-up, preforming, and charging/ transferring processes should be 
considered not only to further reduce the average panel cycle time, but also provide ease 
of handle-ability. In order to meet at least 100,000 per year a 3-min average part cycle 
time is needed, which requires a work cell to be set up with optimized processes and 
minimal capital investment. 

• Conventional hydraulic press is not the only solution to mold thermosetting prepregs 
since compaction pressure as low as vacuum to 150 psi were shown to be adequate. One 
might consider other processes such as RapidClave®, HCLT and LIT having desired 
rapid heating/cooling and substantially lower energy consumption as alternative molding 
methods. 

• Recycling can reduce cost further and should be considered.  
 
  1.5 CONCLUSIONS 
 
The followings were found during execution of the present study 

- Established a collaborative working framework 
- Set up a dynamic, passionate team with 14 organizations 
- FAC-03/hydraulic press as the best combination for the fastest cure (≤ 3 min) and the highest 

Tg (~190 oC) 
- Completed database build from flat panels 

• Achieved cure time 3-6 min with isothermal and fast ramp up to 120 oC/min. Fastest 
cure cycle time provided by hydraulic press.  

• Applied pressure from vacuum to 150 psi 
• Achieved Tg (G’ from DMA) from 120-190 oC 
• RapidClave® and LIT provided consistently best molded surfaces with minimal 

rework and low to very low void content  
• HCLT might be more suitable for preforming process 
• Quickstep process might be more suitable mid-volume automobile 
• Projections indicate that long hand-up time can be substantially reduced with 

ATL/AFP 
• Projections indicate that high scrap rate with manual/ hand lay up and scrap rate can 

be substantially reduced with ATL/AFP 
• Successfully molded flat panels with scrap prepreg 
• Completed rough part cost estimation of GM Escalade roof outer panel 

 
 
LEAD PARTNER BACKGROUND 

Toray Composites (America), Inc. (“TCA”) was first established in 1992 to enable an efficient supply 
stream of Toray's carbon fiber composite materials. First used on the Boeing 777, Toray's advanced 
Carbon Fiber composite materials are now incorporated into the 777 and 787 primary structure and 
will be used on the new 777X wing. TCA supplies a diverse customer base both domestically and 
internationally and is a major exporter from Washington State. TCA is a wholly owned subsidiary of 
Toray Industries, Inc., located in Tacoma, WA.  
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TCA with support from Toray Industries (Japan) has resources and capabilities for being the center of 
the ecosystem of prepreg supply chain for the automobile industry for the following reasons: 
(1) Over 30 year experiences of high and stable quality prepreg manufacturing evidenced by stable 

cured thickness. TCA has established capacities and capabilities to support mass-scale production 
of carbon fiber prepregs for aerospace, automotive, industrial, and sporting goods applications. 
We are ahead of the competition in terms of both quality and capacity. 

(2) Over 30 years of prepreg R&D focusing on performance improvements as well as quick cure 
abilities, based on the experiences from aerospace and automotive markets and inputs from 
customers and potential partners 

(3) Over 20 year experiences working with prepreg supply chain for aerospace such as Boeing 777, 
787, 777X aircraft programs 

(4) Toray and TCA has led several successful automobile programs including Nissan Skyline GT-R’s 
hoods, drive shaftsvi, Teewave AR1 composite car from Toray’s own materials and processesvii 

(5) TCA has already supplied fast-cure prepregs such as G-83C to automobile market. G-83C is one 
of the best performing products in the current automotive market for both autoclave and advanced 
fast-cycle processing methods. Plasan Carbon Composites (PCC) has been using it for both 
Chevrolet Corvette and Viper sports car programsviii. 
 

PARTNER INTRODUCTION (SEE APPENDIX) 
                                                            
i Anthony Schiavo “Carbon Fiber 2.0: Roadmap for Growth to 2020 and Beyond”, Lux Research Inc., SPE Automobile 2015. 
ii Lassis et al. “Series production of high strength composites”, Roland Berger, 2012 
iii http://australianaviation.com.au/2016/04/quickstep-deliveries-of-f-35-vertical-tails-components-expected-to-start-by-june/ 
iv http://www.quickstep.com.au/Business-Units/Quickstep-Aerospace/ORPE-Large-Quickstep-Curing-System 
v Jeff Sloan “ATL and AFP: Defining the megatrends in composite aerostructures”, Composites World, 2008. 
vi Kyono et al. “Carbon fiber composites applications for auto industries”, SPE Automobile 2003. 
vii Toray Press Release 2011. http://www.toray.com/news/pla/nr110909.html 
viii Composites World 2005. http://www.compositesworld.com/articles/corvette-z06-adds-carbon-fiber-fenders 



APPENDIX: PARTNER INTRODUCTION 
 

1. Zoltek Corporation (‘Zoltek’) 

2. Reichhold LLC 2 (‘Reichhold’) 

3. Janicki Industries, Inc. (‘Janicki’) 

4. Globe Machine Manufacturing Company (‘Globe’) 

5. Composite Recycling Technology Center (‘CRTC’)  

6. American Composites Manufacturers Association (‘ACMA’)  

7. Michigan State University (‘MSU’) 

8. Huntsman (“Huntsman”) – not available 

9. RocTool (“RocTool”) 

10. KTX Corporation (“KTX”) 

11. ChemTrend (“Chem Trend”) 

12. Quickstep (“Quickstep”) – not available 

13. Toray Carbon Fibers (America), Inc. (“CFA”) 

 
 



 

Zoltek Corporation Phone: (314) 291-5110 

3101 McKelvey Rd. Toll Free: (800) 325-4409 

St. Louis, MO. 63044 Fax: (314) 291-6511 

United States of America Web Site: www.ZOLTEK.com 

 

No US09000636 

ISO 9001 
AS9100 

BUREAU VERITAS 
Certification 

Date: 11 October 2016 
 
From: Philip L. Schell, Ph.D. 
 
Company Overview 
Zoltek Corporation is a subsidiary of The Toray Group of Japan based in St. Louis, MO.  Zoltek is focused 
on research, development, production, marketing and sales of a large tow carbon fiber product for the 
composites market. 

The large tow product that Zoltek produces is a 50K (50,000 filament) tow or roving.  The company 
focuses on high throughput, large tow products and low cost of production.  With this focus, it is 
possible to produce and sell profitably a carbon fiber product at a much lower cost than conventional 
aerospace carbon fiber producers.  Zoltek’s focus is on the industrial and commercial markets for carbon 
fiber such as i) wind energy, ii) automotive, iii) infrastructure and iv) other markets such as oil/gas and 
sporting goods where possible. 

 
Contribution to “Seahawks” project 
Zoltek’s contribution to the “Seahawks” project was to provide samples of PX35-13 50K tow product for 
prepreg production and comparison to Toray’s standard product T700.  In addition, Zoltek provide a 
technical service visit by a fiber processing expert to Toray Composites America (TCA) facility in Tacoma, 
WA. 

 
Current Technology 
The current technology at Zoltek is to produce a low cost 50K carbon fiber tow.  Zoltek believes that in 
most markets, including automotive, that cost will play a very important role.  Especially in a prepreg 
product for compression molding where the carbon fiber can account for >70% of the material cost and 
likely >50% of the final product cost. 

 
Further Development 
Zoltek is continually seeking to drive down the cost of producing carbon fiber and improving the quality 
of our 50K tow product.  There are also project in place to develop new sizing chemistry technology for 
improved adhesion and performance in both epoxy and vinyl ester composites. 
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919-990-7500 ● 800-448-3482● P.O. Box 13582, Research Triangle Park, NC USA 27709 ● 1035 Swabia Court, Durham, NC USA 27703 ● 
www.reichhold.com 

 

Reichhold LLC2 is a leading resin manufacturer, specializing in the composites and coatings markets.  
Reichhold enjoys a global footprint, with 19 manufacturing sites and 5 Technology Centers, located in 12 
countries.  Reichhold has a nearly ninety year track record of innovation in thermosetting resin and 
coating markets, on a broad, international basis.  Over the past thirty years, Reichhold has supplied 
several unsaturated polyester and vinylester resins into the automotive composites market.  These 
resins have historically been used by SMC & BMC compounders and fabricators, to produce many 
different structural, “under-the-hood” and Class A automotive composite components.  As a result, 
Reichhold has extensive experience, know-how, and industry contacts within the automotive market. 
 
Through October 1, 2016, for Phase I of the IACMI / Toray SEAHAWKS Project, Reichhold has contributed 
about $30,000 (direct cost), for tooling modifications, raw resin materials, formulation support to TCA, 
compression molding (of four different prepregs) and analytical testing, versus an original commitment 
of $15,000.  The project has required more Technical support and testing than was originally planned.  
 
Current Technology used in making Cost-Effective, Light Weight Automotive Parts 
 
Reichhold currently supplies snap-curing ADVALITE™ Vinyl Hybrid resins for use in the Chevrolet Spark 
and Corvette programs.  Vinyl Hybrid resins are monomer-free, styrene-free systems that use a free 
radical mechanism for cure.  ADVALITE™ Vinyl Hybrid technology enables fabricators to utilize “snap 
curing” processes (i.e., press molding in 60-90 seconds) that are based on prepregs, resins and molding 
compounds that do NOT require refrigeration, either in shipping or storage.  
 
The Chevy Spark composite battery tray is manufactured using a fiberglass mat prepreg made with a 
“hot melt” version of ADVALITE™ Vinyl Hybrid resin.  The 40 kg battery tray is compression molded in 
two parts, using oil-heated, matched metal tools kept hot, at 150° C.  The unique resin chemistry allows 
pre-stacked layups (3mm thick) to be loaded into hot presses, cured completely (using dielectric sensors 
in each mold), in less than 90 seconds, and then de-molded “hot”, which dramatically shortens overall 
cycle time, and allows rate production of hundreds of thousands of parts per year.  Composite sandwich 
main floor panels for the Chevy Corvette are also compression molded, using a liquid version of 
ADVALITE™ Vinyl Hybrid resin that is injected into a dry preform made of fiberglass mat and low-cost 
core material.  These panels are also snap cured, in a process that allows very rapid production cycles.  
 
Phase I - Applying ADVALITE™ Technology to other Fiber Forms and Processes 
 
Based on success using Vinyl Hybrids in fiberglass prepregs and liquid injection molding, Reichhold 
recently introduced these fast-curing, room temperature storage resins into additional markets, on 
other forms of carbon fabrics, and carbon roving, for making composite structures that are a) vacuum-
bag molded, b) filament wound, c) infused into dry carbon preforms, and d) processed into carbon SMC.  
As a result, ADVALITE™ resin systems are now being used on woven carbon prepreg fabrics, 
unidirectional CF prepreg tape, and in innovative carbon SMC formulations, with applications in 
aerospace, defense, energy, communications, recreation and other industrial markets.  Like the FAC-05 
and 06 prepregs made at TCA, many of these systems are blended and formulated with special additives 
to achieve specific goals for viscosity, tack level, toughness and performance at various temperatures.   
 
With completion of Phase I of the SEAHAWKS Project, Reichhold is confident that low-risk carbon 
prepregs and SMC made with ADVALITE™ Vinyl Hybrid resins will produce high quality, high strength 
automotive parts that provide dramatically faster manufacturing cycle times versus known epoxies.  The 
goal for Phase II will be confirmation of the fastest possible cycle times on larger, more realistic panels.   



 
 
 
 
 
 
 
 
 
TO:   Felix Nguyen 
FROM:  Andy Bridge 
SUBJECT:  Janicki Introduction 
DATE:  10-10-2016 
 

 

Janicki Industries Inc. 

Janicki Industries is a privately owned Engineering and Manufacturing company, specializing in 

advanced composite materials and exotic metals, with large-scale facilities and high precision 

equipment that produces tooling and parts for a myriad of industries ranging from aerospace, 

marine, defense, transportation, space and infrastructure. Janicki was established in 1993 with 

1.5 employees and $25,000, and today employees 690, of which 140+ have engineering degrees. 

Janicki has successfully developed a rapid Heated Composite Light Tool (HCLT) technology to 

cure prepreg material out of autoclave.  Heating is achieved by integrating a structural carbon 

layer as a conductive heating element which reduces cost over conventional heating systems.  

Using a thin composite shell tool has the added benefit of a low thermal mass when compared to 

metal resulting in fast ramp rates with low energy usage.  By applying heat directly to the HCLT 

coupled with the low thermal mass, ramp rates up to 200°F/min can consistently be achieved. 

The HCLT can also be utilized as a lay-up tool, vacuum forming tool and a cure tool in one for 

less than half the cost of a metallic approach.  

Limitations are surface finish (print) and longevity (durability for high cycles). Potentially these 

limitations are overcome with non-cosmetic critical parts (hood liner, floor panels, etc.) and the 

low cost to repetitively fabricate low cost disposable thin shell tools that utilize a common 

vacuum chuck. 

An ideal application may be for preform tooling using vacuum pressure only (<2 bar) as surface 

finish is not critical, pressures are low and temperatures are typically not as high. Multiple HCLT 

tools could shuttle between ATL/ATP prepreg laydown, preforming stages, and final molding 

press all in a highly automated work cell. 

 

 

 

END 

 
 
 
 

360.856.5143 • 888.856.5143 toll free • 360.856.0372 fax • www.janicki.com 
AS9100C | AC7118 Nadcap Certified • Hamilton, WA 

719 Metcalf Street 
Sedro-Woolley, WA 98284 
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GLOBE MACHINE MANUFACTURING COMPANY: INTRODUCTION 

 

Globe Machine is an innovative supplier of engineered, custom-designed and built, fully-
integrated composite manufacturing and material handling equipment.  

Globe Machine serves automotive, aerospace, defense and industrial customers with 
patented RapidClave2® technology for highly accelerated out-of-autoclave composite 
curing.  

Globe Machine also offers automated tape/fiber placement technologies and unique, 
creative material handling and process solutions for both thermoset and thermoplastic 
composites. 

For almost 100 years, Globe Machine has produced automated production systems for high-
volume, cost-sensitive industries with all services located under one roof.  

 

SEAHAWKS PROJECT: GLOBE MACHINE MANUFACTURING COMPANY: 
TECHNOLOGY CONTRIBUTION 

In this project, Globe provided RapidClave2® machine-time and other resources to facilitate 
cure of material-sample plaques made from CF/Epoxy prepreg and CF/Monomer-free Vinyl 
Ester prepreg materials. 

The Globe RapidClave2® creates controlled-heating temperatures to 550° F, 200 psi 
pressure, 28 inches of vacuum, and rapid cooling. Temperature-rise rates of 50° C/minute 
are possible, with full control over ramps and dwell-times as needed.  

With RapidClave® control of heating, cooling, pressure, and vacuum conditions within the 
curing tool, Globe attains uniform void-free resin-cure results in about 6-minutes. 

Physical-property evaluation of cured plaques shows performance equivalent to that 
obtained by longer conventional autoclave cures. Also, surface-finish properties 
approximating “Class A” quality were demonstrated. 

This technology has already been proven in a production setting where 50,000+ part-sets a 
year are made supporting a major automotive program, replacing conventional autoclave 
technology. 
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2220 West 18th Street, Port Angeles, WA 98363 

Company Overview: The mission of the CRTC is to inspire and grow the global composite recycling 
community through innovation in technology and manufacturing that transforms carbon fiber scrap into 
products that positively impact people’s lives and our environment. Toward that end the CRTC started 
operations with equipment donated from Profile Composites and materials donated by Toray 
Composites America and moved into a 25,000 ft2 purpose-built facility in August of 2016.  Their first 
commercial product was launched in November 2016 utilizing compression molding technologies with 
scrap TCA aerospace carbon/epoxy pre-preg.  The CRTC will continue to focus on new product 
development and launch and has 4 additional products in the pipeline for 2017, including two in 
transportation applications. 

 

Contribution to “Seahawks” Project: The CRTC’s contribution to the Seahawks project was to provide 
experimental molding with both continuous and chopped formats of scrap pre-preg that was generated 
in the molding sample panel trials.  CRTC’s compression molding trials used a high-temperature hot-
platen press (from Wabash-MPI), and proved that very low void content could be achieved at a 6-minute 
cycle time.  The CRTC additionally generated input for the project on potential cost reductions to a large 
volume automotive component through utilizing the scrap in non-appearance internals. 

  

Current Technology: The current technology at CRTC consists of compression molding at sizes up to 60” 
x 30” 650F platen presses, waterjet trim and 5-axis machining, and large oven/vacuum bag operations.  
The CRTC additionally has complete steel tool-making in-house and will be outfitting one or more of the 
presses with Roc-Tool induction heating systems for rapid cycle times.  

  

Further Development: CRTC is expanding both the size and volume of the pre-preg scrap usage into 
value-added products, and is engaged in several transportation application developments at this time.  
Systems capability to handle up to 500 TPY is planned during 2017, and we are partnering with IACMI for 
development that would support high-volume automotive manufacturing (using pre-preg) with systems 
designed to capture and reuse all scrap internally in a vertically integrated operation. 
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methods; process simulation models for vacuum bag–autoclave cure, thermoplastic composite 
consolidation, filament winding, advanced fiber placement, injection molding, compression 
molding and sheet forming and including liquid molding processes such as RTM, VARTM, and 
RFI using commercial codes; models for extrusion of long chopped fiber thermoplastic 
compounds; improved models for prediction of fiber attrition during melt compounding, 
extrusion, and injection molding; a patented mechanical fastener with polymer inserts for joining 
composites.   

 

In this TORAY COMPOSITES AMERICA Phase 1 project, MSU conducted the testing and 
evaluation of the composite panels manufactured by the five different methods.  The testing and 
evaluation included: composite panel sample preparation and measurement of the Flexural, 
Tensile, Compression and Interlaminar properties;   failure surface documentation using 
microscopy; Thermal Analysis using Differential Scanning Calorimetry (DSC); NDI inspection 
using C-scan and microscopy for void presence and origin; surface characterization using 
Profilometry and Wave Scan;  
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Innovative Molding Technologies 

www.roctool.com

   
    
   
   
This document can be used by Dr. Felix Nguyen, Principal Research Scientist at TCA, for his presentation on the 
“Seahawks” project, looking at Rapid Prepreg Molding for Automobile Structural Parts. 
 
Company introduction 
Created in 2000, RocTool is a Technology & Manufacturing solutions provider offering Engineering services and 
systems. RocTool induction process is fully adapted to composite molding and plastic injection, including multiple 
configurations to fit with tier manufacturer’s requirements. RocTool’s Research and Development team is constantly 
adapting the technologies to more materials including metal. 
 
As a Heat and Cool technology leader, RocTool offers now Light Induction Tooling™ to composite part suppliers 
and High Definition Plastics™ capabilities to plastic molders. The processes developed by RocTool are used in 
production by major brands in innovative industries such as automotive, aerospace, consumer products & electronics. 
They hold many advantages including reduced cycle times, surface quality, light-weighting and performance, 
therefore resulting in an overall cost reduction of the produced parts for manufacturers. 
 
RocTool is listed on the Alternext Paris stock market. Its headquarters and R&D center is situated at Le Bourget du 
Lac (France). RocTool also has offices and molding platforms in North America, Japan, Taiwan and Germany.  
 
Current technology used in the project 
“Resulting of 3 years of R&D, the Light Induction Tooling™ (LIT™) will allow RocTool to develop its offer in key 
segments, such as aerospace, automotive and transport” explains Mathieu Boulanger, RocTool CEO. 
 
The LIT™ technology is fully adapted to thermoplastic and thermoset composites; it enables the production of very 
large parts and allows manufacturers to improve their existing production capabilities. 
 
RocTool LIT™ addresses OEM challenges to make cost effective composite parts with quick cycle times. LIT™ 
technology does not require any compression press machines or special large forming press that only few 
manufacturers can afford globally. A light tooling structure integrates RocTool state of the art induction heat 
technology and is connected to RocTool Performance Cooling units. 
 
“With this new Out Of Press and Out Of Autoclave (OOA) technique, manufacturers can now increase their 
capabilities without investing in large tonnage machines and the OEM can extend their supply chain for such 
composite parts. Making large composite parts without compression machines, with light tooling configurations and 
precise temperature control is a game changer” says Mathieu Boulanger. 
 
With this new innovative process, RocTool reduces the thickness of the tools; and shortens the heating and cooling 
times achieving cycles below 3 minutes for various materials. The LIT™ enables an accurate control over heat 
ramps, from very fast heating to defined heat rates for aeronautical certified resin systems which require an overall 
longer cycle. 
 
“The energy cost is very low and we obtain an exceptional return. Globally speaking, this new RocTool process allows 
the end user to obtain massive energy savings compared to conventional manufacturing processes! For the JEC 
World demo mold, the energy consumption remains below 2 kW.h, and a cost per part below 15 cents, therefore 
much less than using an autoclave.” highlights Dr. Jose Feigenblum, RocTool CTO. 
 
Future improvements of the technology 
Since its release on the market, the collaboration between RocTool and KTX continues in order to widen the range of 
LIT™ solutions, with different induction and tooling technologies. A few tooling materials are considered and being 
optimized by the engineering teams, since the turn-key solution is offered as custom to exceed OEM’s 
requirements. Based on their experience from LIT™ productions, RocTool processing experts can now provide a 
thorough technical evaluation for each application, considering part’s size, the complexity of the geometry and the 
common process parameters for the selected material. 

IACMI Project #PA16-0349-3.3-01 October 14, 2016
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CorporationKTX Corporation

Profile
Head Quarter: Konan Aichi (Japan)  
Oversea Bases: Detroit (USA), Bangkok (Thai), Seoul (Korea), Shanghai (China)
Main product:  Ni Electroforming

IMG mold, Slush mold, Injection mold, Compression mold
Vacuum forming machine, Mold carrier 

Website: www.ktx.co.jp 

For SEAHAWKS project
Mold for LIT (Light-Induction Tooling), Mold carrier and Molding   



 

 
CHEM-TREND LIMITED PARTNERSHIP 
 
1445 West McPherson Park Drive 
Howell, Michigan 48843 
U.S.A. 
 
Tel: 517.546.4520 
U.S./Canada: 800.727.7730 
Fax: 517.546.1199 

 

Mailing Address: 
P.O. Box 860 
Howell, Michigan 48844.0860 
U.S.A. 
 
 
ChemTrend.com 

10/25/2016 
 
Dr. Felix Nguyen 
Toray Composites America, Inc. 
19002 50th Ave. E 
Tacoma, WA 98446 
 
IACMI Project Phase I Final Report 
 
Company Overview 
 
For more than 50 years, Chem-Trend has been a global leader in the development, production and supply 
of specialized mold release systems. We have a singular focus on developing mold release systems and 
because we are so focused, we can deliver exceptional value, performance and dependability in all we do. 
Chemlease® and Zyvax®, Chem-Trend brands, offer a complete range of mold release systems developed 
to improve composites molding processes. Our superior products are rooted in our manufacturing and 
technical expertise, understanding of molding operations, deep insight and specialized laboratory 
resources. Our expertise goes well beyond just the products that we develop and manufacture, it reaches 
into the production processes of the industries that we serve. Each year, we spend thousands of hours on 
the plant floors of composites processors, giving our technical experts insight into the industry’s toughest 
production challenges. In our world-class laboratories dedicated to the composites industry, we apply this 
insight to developing solutions that improve your operating efficiency. 
 
Contribution to IACMI Project Phase I 
 
Chem-Trend has supported Phase I of the IACMI project in the following ways: 
 

• Provided technical insight on product selection considerations for mold release systems based on: 
o Process: Compression Molding vs. Rapid Clave 
o Material form and chemistry: Prepreg vs. SMC, Epoxy vs. Vinyl Ester 
o Tool medium: Chrome finish, Tool Steel, Aluminum, etc. 
o Molding temperatures  
o Cycle times 
o Spray equipment and investment level 
o Post finishing requirements prior to painting and secondary bonding 
o Release System Component Mix: External mold release, internal mold release, sealers, etc. 

• Furnished various IACMI partner facilities with product samples for continued testing, evaluation 
and process optimization. 

• Generated analytical data pertaining to : 
o External mold release transfer data 
o Internal mold release thermal property characterization  
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                                                                                                                   Toray Carbon Fibers America, Inc.   
                              P.O. Box 248 
                                                                                                                   2030 Highway 20 
                                                                                                                   Decatur, AL 35602-0489 
                                                                                                                   TEL : (256) 260-2626 

 
 
 
 
 
 
Toray Carbon Fibers America was incorporated in 1997 and began production of Torayca® 
brand carbon fibers in 1999.  The production facility in Decatur, AL was designed specifically 
for fiber production and has expanded to a multiple line facility with approximately 7900 
MT/year capacity.  The fibers produced at our facility services the aerospace market as well as a 
variety of industrial and recreational applications. 
 
Toray Carbon Fibers America is pleased to support the Seahawks project by providing 
continuous filament carbon fiber tow as well as technical support from our Technical Center 
which is also located at the Decatur, AL plant site. 
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